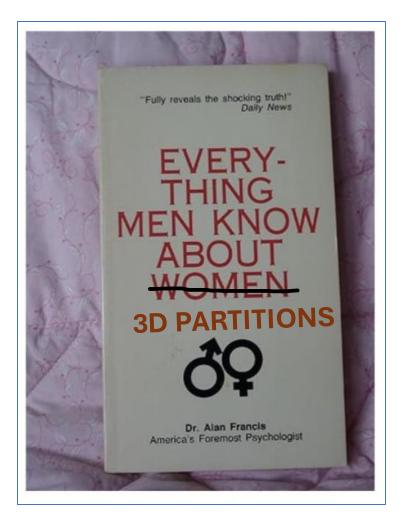
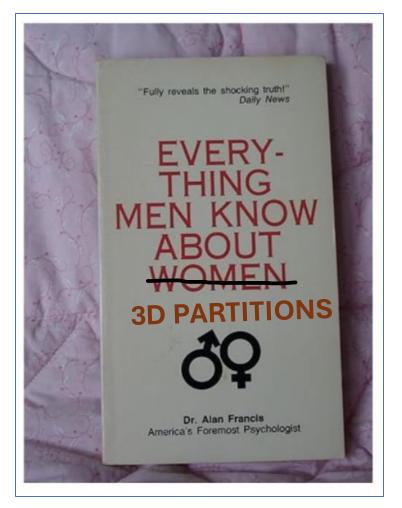
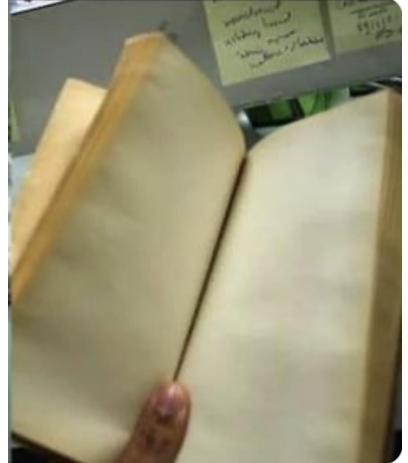
Everything we know about higher-dimensional partitions

Damir Yeliussizov (Kazakh-British TU) Based on joint work with Alimzhan Amanov IPAM seminar (GSI program) May 1, 2024





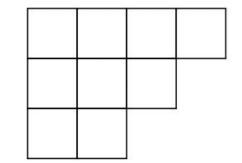


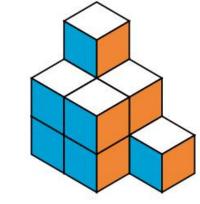
Q. How to generalize integer partitions in higher dimensions?

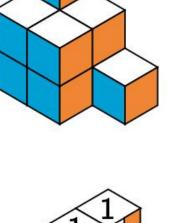
Q. How to generalize integer partitions in higher dimensions?

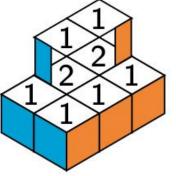
A: Easy

Usual integer partitions (1-d) (λ_i)









Plane partitions (2-d)

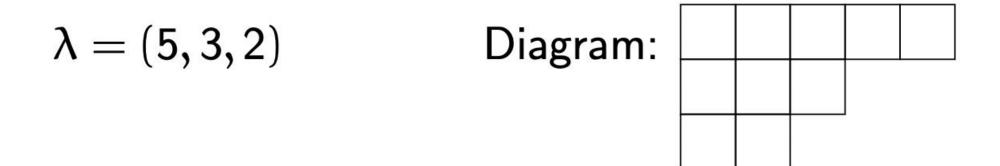
Solid partitions (3-d)

 (π_{ijk})

 (π_{ij})

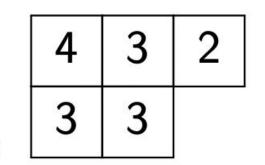
Integer partitions (1-d)

$$\lambda = (\lambda_1 \ge \cdots \ge \lambda_\ell) \qquad |\lambda| = \sum \lambda_i$$

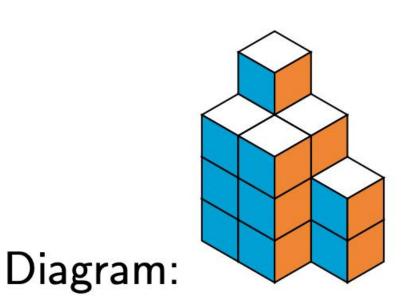


Plane partitions (2-d)

$$\pi = (\pi_{ij}) \qquad \pi_{ij} \geq \pi_{i+1j}, \pi_{ij+1} \qquad |\pi| = \sum \pi_{ij}$$



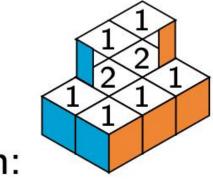
 $\pi =$



d-dimensional partitions

$$\mathbb{N}\text{-tensors} (\pi_{i_1...i_d}) \qquad \pi_{i_1...i_d} \geq \pi_{j_1...j_d} \text{ for } i_1 \geq j_1, \ldots, i_d \geq j_d$$

volume
$$|\pi| = \sum_{i_1,\ldots,i_d} \pi_{i_1,\ldots,i_d}$$

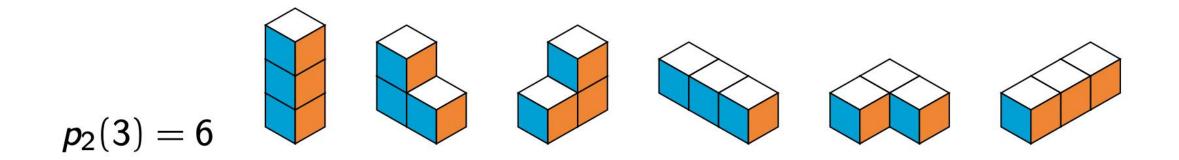


3-d partition:

with 4-d diagram of volume 10.

Enumeration and generating functions

$p_d(n)$ number of d-dimensional partitions of volume n



1-d review

Theorem. (Euler)

$$y(t) = \sum_{\lambda} t^{|\lambda|} = \sum_{n} p(n)t^{n} = 1 + t + 2t^{2} + 3t^{3} + 5t^{4} + \dots = \prod_{n=1}^{\infty} \frac{1}{1 - t^{n}}$$

Dedekind eta function $\eta(z) = t^{1/24}/y(t)$ $(t = e^{2\pi i z})$ is a modular form, i.e. has SL₂ translation $\eta(z+1) = t^{1/24}\eta(z)$ and $\eta(-1/z) = \sqrt{z/i} \cdot \eta(z)$.

(Classics) y(t) is a solution to algebraic differential equation

1-d some refs

THE THEORY OF PARTITIONS

George E. Andrews

Cambridge Mathematical Library

Home > The Ramanujan Journal > Article

Partition bijections, a survey

Published: August 2006

Volume 12, pages 5–75, (2006) Cite this article

Igor Pak 🖂

2-d review **Theorem.** (MacMahon 1890)

$$\sum_{\pi \text{ plane partitions}} t^{|\pi|} = \sum_n p_2(n) t^n = \prod_{n=1}^\infty \frac{1}{(1-t^n)^n}$$

- Proof uses RSK, Schur functions
- There are many known refinements of this generating function

$$\sum_{\pi \text{ in } [a] \times [b] \times [c]} t^{|\pi|} = \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{1 - t^{i+j+k-1}}{1 - t^{i+j+k-2}}$$

2-d some refs

Cambridge Studies in Advanced Mathematics 62

Enumerative Combinatorics Volume 2

RICHARD P. STANLEY

PLANE PARTITIONS IN THE WORK OF RICHARD STANLEY AND HIS SCHOOL

C. KRATTENTHALER

ABSTRACT. These notes provide a survey of the theory of plane partitions, seen through the glasses of the work of Richard Stanley and his school.

1. INTRODUCTION

Plane partitions were introduced to (combinatorial) mathematics by Major Percy Alexander MacMahon [71] around 1900. What he had in mind was a planar analogue of a(n integer) partition.¹

Not MacMahon

Not MacMahon

Not Ramanujan

Not MacMahon -Partitions can't be done!

Not Ramanujan

Not MacMahon -Partitions can't be done! Especially by the likes of you

Not Ramanujan

Not MacMahon -Partitions can't be done! Especially by the likes of you

Not Ramanujan -Then he better start counting very high

Not MacMahon -Partitions can't be done! Especially by the likes of you -Sqrt(58639)

Not Ramanujan -Then he better start counting very high

Not MacMahon -Partitions can't be done! Especially by the likes of you -Sqrt(58639)

Not Ramanujan -Then he better start counting very high -242,1549090

Not MacMahon -Partitions can't be done! Especially by the likes of you -Sqrt(58639) -Combinatorics – glorified dice throwing

Not Ramanujan -Then he better start counting very high -242,1549090

Not MacMahon -Partitions can't be done! Especially by the likes of you -Sqrt(58639) -Combinatorics – glorified dice throwing

Not Ramanujan -Then he better start counting very high -242,1549090 -I can do p(200)

MacMahon's conjecture (1916).

The generating function for d-dim partitions is

$$\sum_{\pi \text{ d-dim partitions}} t^{|\pi|} = \sum_{n} p_d(n) t^n = \prod_{n=1}^{\infty} \frac{1}{(1-t^n)^{\binom{n+d-2}{d-1}}}$$

Note: true for d = 1, 2

MacMahon's conjecture (1916).

The generating function for d-dim partitions is

$$\sum_{\pi \text{ d-dim partitions}} t^{|\pi|} = \sum_{n} p_d(n) t^n = \prod_{n=1}^{\infty} \frac{1}{(1-t^n)^{\binom{n+d-2}{d-1}}}$$

Note: true for d = 1, 2

P. A. MacMahon: "We have evidently, potentially, the complete solution of the problem of three-dimensional partition

... This will form the subject of Part VII of this Memoir."

MacMahon's conjecture (1916).

The generating function for d-dim partitions is

$$\sum_{\pi \text{ d-dim partitions}} t^{|\pi|} = \sum_{n} p_d(n) t^n = \prod_{n=1}^{\infty} \frac{1}{(1-t^n)^{\binom{n+d-2}{d-1}}}$$

Note: true for d = 1, 2

P. A. MacMahon: "We have evidently, potentially, the complete solution of the problem of three-dimensional partition

... This will form the subject of Part VII of this Memoir."

Theorem. (Atkin-Bratley-Macdonald-McKay 1967) Conjecture is **false** for $d \ge 3$ and $n \ge 6$.

"Testimonies"

D. Knuth ('70) "The problem of enumerating three-dimensional ("solid") partitions has never been resolved, ... and Part VII of MacMahon's classic Memoir never appeared. No constructive proof of MacMahon's formula for the two-dimensional case was known until 1969."

"Testimonies"

D. Knuth ('70) "The problem of enumerating three-dimensional ("solid") partitions has never been resolved, ... and Part VII of MacMahon's classic Memoir never appeared. No constructive proof of MacMahon's formula for the two-dimensional case was known until 1969."

R. Stanley ('72): "for $d \ge 3$ almost nothing is known, and Prop. 11.1 casts only a faint glimmer of light on a vast darkness"

"Testimonies"

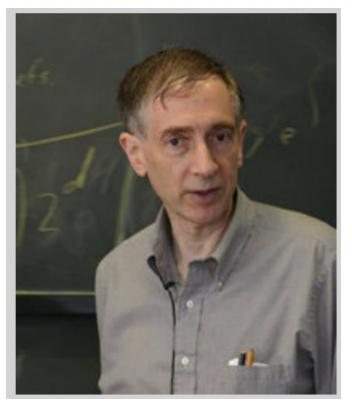
D. Knuth ('70) "The problem of enumerating three-dimensional ("solid") partitions has never been resolved, ... and Part VII of MacMahon's classic Memoir never appeared. No constructive proof of MacMahon's formula for the two-dimensional case was known until 1969."

R. Stanley ('72): "for $d \ge 3$ almost nothing is known, and Prop. 11.1 casts only a faint glimmer of light on a vast darkness"

R. Stanley ('99, EC2): "It now seems obvious to define d-dimensional partitions for any $d \ge 1$. However, almost nothing significant is known for $d \ge 3$."

Enumerative Combinatorics and Applications

Interview with Richard P. Stanley Toufik Mansour



Mansour: Were there specific problems that made you first interested in combinatorics?

Stanley: Perhaps the next such problem was the enumeration of solid (3-dimensional partitions), generalizing MacMahon's famous enumeration of plane partitions. I never made significant progress (and most likely the problem is intractable), but it did lead me to the theory of P-partitions, the subject of my Ph.D. thesis. Q (or hope): Maybe MacMahon wasn't that wrong?

Q (or hope): Maybe MacMahon wasn't that wrong?

A: Maybe

A 'corrected' version

Theorem. (Amanov–Y. 2020) There is a statistic $|\cdot|_{ch}$ on *d*-dim partitions called **corner-hook volume** such that

$$\sum_{\pi \text{ d-dim partitions}} t^{|\pi|_{ch}} = \prod_{n=1}^{\infty} \frac{1}{(1-t^n)^{\binom{n+d-2}{d-1}}}$$

Corner-hook volume statistic

Diagram $D(\pi) \in \mathbb{Z}^{d+1}$ of *d*-dim partition π .

 $\operatorname{Cor}(\pi) := \{ i \in \mathbb{Z}_+^{d+1} : i \in D(\pi), i + e_{\ell} \notin D(\pi) \text{ for all } \ell \in [d] \}.$

$$|\pi|_{ch} = \sum_{(i_1,...,i_{d+1})\in \operatorname{Cor}(\pi)} (i_1 + \ldots + i_d - d + 1)$$

 $\begin{aligned} |\pi|_{ch} &= |\pi| \text{ for } d = 1 \\ |\pi|_{ch} &\neq |\pi| \text{ for } d \ge 2 \end{aligned}$ $\begin{aligned} & \text{Cor}(\pi) = \{(i,j,k) \in D(\pi) : (i+1,j,k), (i,j+1,k) \notin D(\pi)\} \\ &= \{(1,1,4), (1,3,1), (1,3,2), (2,2,1), (2,2,2), (2,2,3)\} \end{aligned}$

 $|\pi|_{ch} = (1+1-1) + (1+3-1) + (1+3-1) + (2+2-1) + (2+2-1) + (2+2-1) = 16.$

More generating functions [AY '20]

Theorem 5.2. Let $\rho \subset \mathbb{Z}_+^d$ be a fixed shape of a d-dimensional partition. We have the following generating functions:

$$\sum_{\pi \in \mathcal{P}^{(d)}, \operatorname{sh}(\pi) \subseteq \rho} t^{\operatorname{cor}(\pi)} q^{|\pi|_{ch}} = \prod_{(i_1, \dots, i_d) \in \rho} \left(1 - t q^{i_1 + \dots + i_d - d + 1} \right)^{-1},$$

Corollary 5.3 (Boxed version). We have

$$\sum_{\pi \in \mathcal{P}(n_1, \dots, n_d, \infty)} t^{\operatorname{cor}(\pi)} q^{|\pi|_{ch}} = \prod_{i_1=1}^{n_1} \cdots \prod_{i_d=1}^{n_d} \left(1 - t q^{i_1 + \dots + i_d - d + 1} \right)^{-1}$$

Corollary 5.4 (Full generating function). We have

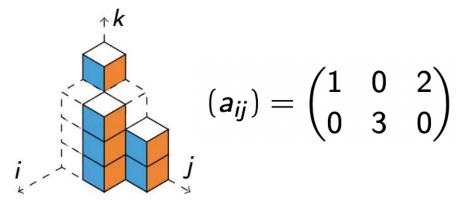
$$\sum_{\pi \in \mathcal{P}^{(d)}} t^{\operatorname{cor}(\pi)} q^{|\pi|_{ch}} = \prod_{n \ge 1} (1 - tq^n)^{-\binom{n+d-2}{d-1}}.$$

Proofs via "corner projection" bijection

Let $\mathcal{M}^{(d)}$ be the set of *d*-dimensional \mathbb{N} -hypermatrices and $\mathcal{P}^{(d)}$ be the set of *d*-dimensional partitions.

Consider the *corner projection map* $\varphi : \mathcal{P}^{(d)} \to \mathcal{M}^{(d)}$ given by $\pi \mapsto (a_i)$, where

$$a_{\mathbf{i}} = |\{i_{d+1} : (\mathbf{i}, i_{d+1}) \in \operatorname{Cor}(\pi)\}|, \quad \mathbf{i} \in \mathbb{Z}_{+}^{d}$$



- Its inverse can be viewed as directed last passage percolation map
- Also related to Stanley's transfer map between poset and order polytopes
- For *d* = 2 in [Y. 19] with applications coming from dual Grothendieck polynomials

3d Grothendieck polynomials [AY '20]

 $g_{\rho}(\mathbf{x};\mathbf{y};\mathbf{z}) := \sum_{\pi: \text{sh}_{1}(\pi) = \rho} \prod_{(i,j,k,\ell) \in \text{Cor}(\pi)} x_{i} y_{j} z_{k} \quad g_{\rho}(\mathbf{x};\mathbf{y};\mathbf{z}) \text{ indexed by plane partitions } \rho_{i}$

solid partitions $\pi \in \mathcal{P}(n_1, n_2, n_3, n_4)$.

$$\sum_{\rho \in \mathcal{P}(n_2, n_3, \infty)} g_{\rho}(\mathbf{x}; \mathbf{y}; \mathbf{z}) = \prod_{i=1}^{n_1} \prod_{j=1}^{n_2} \prod_{k=1}^{n_3} (1 - x_i y_j z_k)^{-1}$$

$$g_{[n_2]\times[n_3]\times[n_4]}(1^{n_1+1}) = |\mathcal{P}(n_1, n_2, n_3, n_4)|_{\mathbb{R}}$$

the number of solid partitions inside the box $[n_1] \times [n_2] \times [n_3] \times [n_4]$

- Quasisymmetric in **x**
- Generalize symmetric (2-d) dual Grothendieck polynomials of [Lam-Pylyavskyy '07]
- Determine probability for directed 3d last passage percolation with geom weights [AY '20]

Asymptotics

Asymptotics $\log p_1(n) \sim c_1 n^{1/2}$, $c_1 = 2\zeta(2)^{1/2}$ (Hardy-Ramanujan) $\log p_2(n) \sim c_2 n^{2/3}$, $c_2 = 3/2^{2/3} \zeta(3)^{1/3}$ (Wright, '31)

Asymptotics $\log p_1(n) \sim c_1 n^{1/2}$, $c_1 = 2\zeta(2)^{1/2}$ (Hardy-Ramanujan) $\log p_2(n) \sim c_2 n^{2/3}$, $c_2 = 3/2^{2/3} \zeta(3)^{1/3}$ (Wright, '31)

Q: Asymptotics of $p_d(n)$?

Asymptotics $\log p_1(n) \sim c_1 n^{1/2}$, $c_1 = 2\zeta(2)^{1/2}$ (Hardy-Ramanujan) $\log p_2(n) \sim c_2 n^{2/3}$, $c_2 = 3/2^{2/3} \zeta(3)^{1/3}$ (Wright, '31)

Q: Asymptotics of $p_d(n)$?

Open problem. Prove limit exists and find it

$$\lim_{n\to\infty}\frac{\log p_d(n)}{n^{d/(d+1)}}=c_d=?$$

Asymptotics of MacMahon's numbers

MacMahon's numbers $m_d(n)$:

$$\sum_{n} m_{d}(n) t^{n} = \prod_{n=1}^{\infty} \frac{1}{(1-t^{n})^{\binom{n+d-2}{d-1}}}$$
$$\log m_{d}(n) \sim \gamma_{d} n^{d/(d+1)}, \qquad \gamma_{d} = \frac{d+1}{d^{d/(d+1)}} \zeta(d+1)^{1/(d+1)}$$

Simulations by physicists

Conjecture 1. (Mustonen–Rajesh, J. Phys. A '03)

 $\log p_3(n) \sim \log m_3(n) \sim 1.78..n^{3/4}$

Conjecture 2. (Balakrishnan-Govindarajan-Prabhakar, J. Phys. A '12)

 $\log p_d(n) \sim \log m_d(n)$

Simulations by physicists

Conjecture 1. (Mustonen–Rajesh, J. Phys. A '03)

 $\log p_3(n) \sim \log m_3(n) \sim 1.78..n^{3/4}$

Conjecture 2. (Balakrishnan-Govindarajan-Prabhakar, J. Phys. A '12) $\log p_d(n) \sim \log m_d(n)$

Simulation 3. (Destainville-Govindarajan, J. Stat. Phys. '15)

 $\log p_3(n) \sim 1.82..n^{3/4}$

What's known

Theorem. (Bhatia–Prasad–Arora, '97) $\log p_d(n) = \Theta(n^{d/(d+1)})$

What's known Q: Explicit lower/upper bounds? Theorem. (Bhatia–Prasad–Arora, '97) $\log p_d(n) = \Theta(n^{d/(d+1)})$

What's known Q: Explicit lower/upper bounds? **Theorem.** (Bhatia–Prasad–Arora, '97) log $p_d(n) = \Theta(n^{d/(d+1)})$ **Theorem.** (Dai-Prymak-Shadrin-Temlyakov-Tikhonov, '23) $\frac{(d+1)}{(d+1)^{1/(d+1)}}\log 2(1-o(1)) \le \frac{\log p_d(n)}{n^{d/(d+1)}} \le \gamma_1(d+1)^{\log(d+1)}$ **Theorem.** (Y. '23) $\frac{(d+1)}{(d+1)^{1/(d+1)}}(\log 2 + \epsilon_d) \le \frac{\log p_d(n)}{r^{d/(d+1)}} \le (d+1)\zeta(d+1)^{1/(d+1)} + o(1)$

What's known Q: Explicit lower/upper bounds? **Theorem.** (Bhatia–Prasad–Arora, '97) log $p_d(n) = \Theta(n^{d/(d+1)})$ **Theorem.** (Dai-Prymak-Shadrin-Temlyakov-Tikhonov, '23) $\frac{(d+1)}{(d+1)^{1/(d+1)}}\log 2(1-o(1)) \le \frac{\log p_d(n)}{n^{d/(d+1)}} \le \gamma_1(d+1)^{\log(d+1)}$ **Theorem.** (Y. '23) $\frac{(d+1)}{(d+1)^{1/(d+1)}}(\log 2 + \epsilon_d) \le \frac{\log p_d(n)}{n^{d/(d+1)}} \le (d+1)\zeta(d+1)^{1/(d+1)} + o(1)$ **Cor.** Lower bound implies Conjecture 2 is false for $d \geq 7$.

What's known Q: Explicit lower/upper bounds? **Theorem.** (Bhatia–Prasad–Arora, '97) log $p_d(n) = \Theta(n^{d/(d+1)})$ **Theorem.** (Dai-Prymak-Shadrin-Temlyakov-Tikhonov, '23) $\frac{(d+1)}{(d+1)^{1/(d+1)}}\log 2(1-o(1)) \le \frac{\log p_d(n)}{n^{d/(d+1)}} \le \gamma_1(d+1)^{\log(d+1)}$ **Theorem.** (Y. '23) - Lower bound #partitions pyramid $\frac{(d+1)}{(d+1)^{1/(d+1)}}(\log 2 + \epsilon_d) \le \frac{\log p_d(n)}{n^{d/(d+1)}} \le (d+1)\zeta(d+1)^{1/(d+1)} + o(1)$ - Upper bound via corner-hook vol **Cor.** Lower bound implies Conjecture 2 is false for $d \geq 7$.

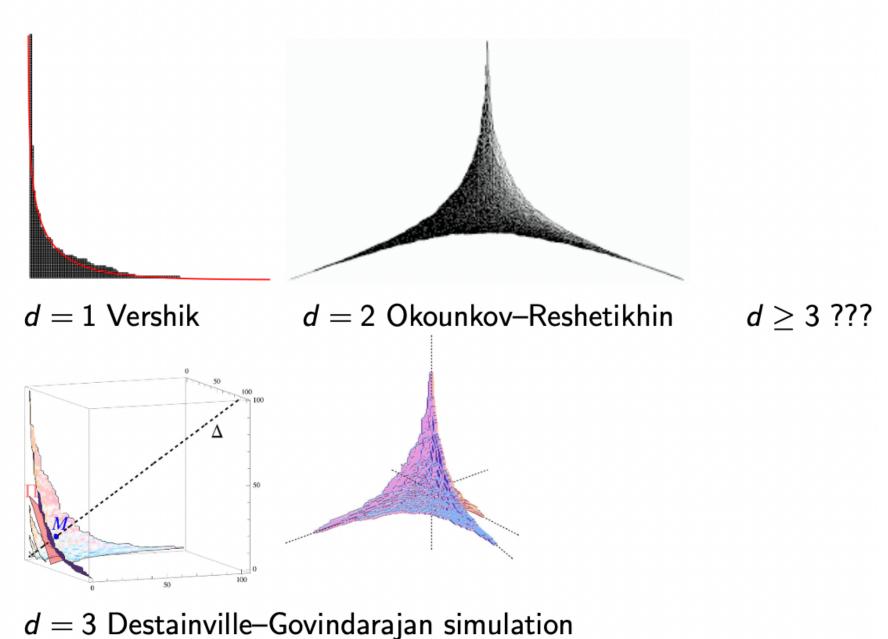
Problem. Show the same for d = 3, 4, 5, 6

What's known Q: Explicit lower/upper bounds? **Theorem.** (Bhatia–Prasad–Arora, '97) log $p_d(n) = \Theta(n^{d/(d+1)})$ **Theorem.** (Dai-Prymak-Shadrin-Temlyakov-Tikhonov, '23) $\frac{(d+1)}{(d+1)^{1/(d+1)}}\log 2(1-o(1)) \le \frac{\log p_d(n)}{n^{d/(d+1)}} \le \gamma_1(d+1)^{\log(d+1)}$ **Theorem.** (Y. '23) - Lower bound #partitions pyramid $\frac{(d+1)}{(d+1)^{1/(d+1)}}(\log 2 + \epsilon_d) \le \frac{\log p_d(n)}{n^{d/(d+1)}} \le (d+1)\zeta(d+1)^{1/(d+1)} + o(1)$ - Upper bound via corner-hook vol **Cor.** Lower bound implies Conjecture 2 is false for $d \geq 7$.

Problem. Show the same for d = 3, 4, 5, 6

Theorem. (Oganesyan, '23) For sufficiently large *n*, $\frac{\log p_d(n)}{n^{d/(d+1)}} < 4200$

Limit shapes of random partitions



Boxed d-dimensional partitions

Let $P_d(n)$ be the number of *d*-dimensional partitions with diagram inside the box $[n]^{d+1}$

$$P_1(n) = \binom{2n}{n}, \quad P_2(n) = \prod_{i,j,k=1}^n \frac{i+j+k-1}{i+j+k-2}$$

Theorem. (Moshkowitz–Shapira, 2014)

$$\frac{2}{3\sqrt{d+1}} \le \frac{\log_2 P_d(n)}{n^d} \le 2$$

Problem. Show as $n \to \infty$ limit exists and find it.

- Related to Ramsey theory and the number of poset antichains

– Some more and $d \rightarrow \infty$ studied in [Pohoata–Zaharov '21, Park–Sarantis–Tetali '23, Falgas-Ravry–Räty-Tomon '23]

Partitions inside pyramid

Let $A_d(n)$ be the number of d-dimensional partitions with diagram inside the simplex $x_1 + \ldots + x_{d+1} \leq n$

Theorem. (Y. '23)

$$1 \leq \frac{\log_2 A_d(n)}{\binom{n-1}{d}} \leq 2$$

Problem. Show as $n \to \infty$ limit exists and find it.

Complementary boxed partitions

Another recent explicit generating function

[F. Schreirer-Aigner 2023]

Theorem 1.1. Let $\mathbf{x} = (x_1, \ldots, x_{d+1})$, $\mathbf{n} = (n_1, \ldots, n_{d+1}) \in \mathbb{N}_{>0}^{d+1}$ and denote by FCP(n) the set of fully complementary partitions inside a $(2n_1, \ldots, 2n_{d+1})$ -box. Then

$$\sum_{\mathbf{n}\in\mathbb{N}^{d+1}} |\operatorname{FCP}(\mathbf{n})| \mathbf{x}^{\mathbf{n}} = \frac{\prod_{i=1}^{d+1} x_i \left(\sum_{i=1}^{d+1} \left(x_i^{-1} + dx_i \right) - \sum_{1\leq i,j\leq d+1} x_i x_j^{-1} \right)}{\left(1 - \sum_{i=1}^{d+1} x_i \right) \prod_{i=1}^{d+1} (1 - x_i)}.$$
 (1.4)

Connections in some other areas

Algebra, geometry, physics

Commutative algebra, Artinian monomial ideals

Enumerative geometry, Donaldson-Thomas invariants (Euler characteristics of Hilbert schemes)

Counting black holes in string theory [Gopakumar-Vafa]

That's it?