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LR coefficients cλµν

e.g. via Schur polynomials sλ(x1, . . . , xn) := det[x
λj+n−j

i ]/
∏
i<j

(xi − xj )

sµ · sν =
∑
λ

cλµν sλ |λ| = |µ|+ |ν|

Many interpretations: combinatorial, geometric, representation-theoretic.

We’re interested in large cλµν
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Dimensions

f λ = dimSλ = #SYT shape λ i.e. chains ∅ → λ in Young’s lattice

=
n!∏

�∈λ hook�
(hook-length formula)

f 321 = 6!
1·1·1·3·3·5 = 8

1 3 6

2 4

5



(vague) meta message

Large LR cλµν <—∼—∼—∼—∼—∼—> Large dim f λ



Max LR and dim

C (n, k) = max
λ`n µ`k ν`n−k

cλµν C (n) = max
k

C (n, k)

D(n) = max
λ`n

f λ

k 1 2 3 4 5 6 7 8 9 10 11

D(k) 1 1 2 3 6 16 35 90 216 768 2310

C (23, k) 1 1 2 3 6 16 20 24 19 30 35

Theorem (Pak–Panova-Y. 2019)

I stability: C (n, k) = D(k) for n ≥
(k+1

2

)
I monotonicity: C (n, k) ≤ C (n + 1, k) and C (n) ≤ C (n + 1)
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quick plan

1) asymptotics of D(n)

2) asymtotitcs of C (n)



Largest dimensions

(Old) Problem: The asymptotics of D(n)

Bivins–Metropolis–Stein–Wells ’54, Baer–Brock ’68, McKay ’76, Rasala ’77



Largest dimension

Burnside identity:

∑
λ`n

(f λ)2 = n! =⇒ √
n!

p(n)
≤ D(n) <

√
n!

p(n) ∼ 1
4n

√
3
eπ
√

2n/3 = # partitions of n

early wrong conjectures: D(n) ≥
√
n!/poly(n)

Theorem (Vershik-Kerov 1985)

√
n! e−1.29

√
n ≤ D(n) ≤

√
n! e−0.11

√
n

(Q) What partitions attain max dimensions?
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Partitions for largest & typical dimensions

Vershik-Kerov–Logan-Shepp (VKLS) limit shape1

1.17 The limit shape theorem 61

- 2 20-0.5-1 0.5 1

(a)

(b)

Figure 1.13 (a) The Logan–Shepp–Vershik–Kerov limit shape ⌦.
(b) The limit shape superposed for comparison (after correct
scaling) on a simulated Plancherel-random Young diagram of
order n = 1000.

Theorem 1.22 is a landmark achievement in the development of the
mathematics of longest increasing subsequences; the result, and the ideas
used in its proof, have had a considerable impact on research in the field
beyond their immediate applicability to the Ulam–Hammersley problem.
Take a moment to appreciate this beautiful result with a look at Fig. 1.13.

As a first application of Theorem 1.22, we can prove a first asymptoti-
cally sharp bound on `n, the average maximal length of a longest increasing
subsequence of a random permutation of order n.

[λ] → Ω(x) = 2
π

(
x arcsin(x/2) +

√
4− x2

)
x ∈ [−2, 2]

supt |[λ](t)/
√
n −Ω(t)| < c/n1/6

1pic from Romik’s book; partition sampled from the Plancherel measure (f λ)2

n!



Partitions attaining largest dimensions

1.17 The limit shape theorem 61

- 2 20-0.5-1 0.5 1

(a)

(b)

Figure 1.13 (a) The Logan–Shepp–Vershik–Kerov limit shape ⌦.
(b) The limit shape superposed for comparison (after correct
scaling) on a simulated Plancherel-random Young diagram of
order n = 1000.

Theorem 1.22 is a landmark achievement in the development of the
mathematics of longest increasing subsequences; the result, and the ideas
used in its proof, have had a considerable impact on research in the field
beyond their immediate applicability to the Ulam–Hammersley problem.
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As a first application of Theorem 1.22, we can prove a first asymptoti-
cally sharp bound on `n, the average maximal length of a longest increasing
subsequence of a random permutation of order n.

Partitions sequence λ(n) ` n is Plancherel if

f λ
(n)

≥
√
n! e−c

√
n

Theorem (Logan-Shepp 1977, Vershik-Kerov 1985)

Every Plancherel sequence has VKLS limit shape.

note: f λ =
√
n!eo(n) is enough for VKLS shape

related: solution to Ulam’s problem on longest increasing subsequences, λ1 ∼ 2
√
n.



Stanley’s problem

Theorem (Stanley 2015)

C (n) = 2n/2−O(
√
n)

Theorem (Harris–Willenbring 2014)

∑
λ`n, µ, ν

(cλµν)
2 = F (n) = #bicolored partitions of n

Problem (Stanley)

What partitions λ, µ, ν attain the maximum?
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Max LR

Theorem (Pak-Panova-Y 2019)

(
n

k

)1/2

e−d
√
n ≤ C (n, k) ≤

(
n

k

)1/2

In fact, ∑
λ`n

(cλµν)
2 ≤

(
n

k

) ∑
µ`k,ν`n−k

(cλµν)
2 ≤

(
n

k

)
∑

λ`n,µ`k,ν`n−k

(cλµν)
2 ≥

(
n

k

)
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Asympt. largest LR attained on Plancherel seq

Theorem (Pak-Panova-Y 2019)

(i) ∀ Plancherel λ ` n ∃ Plancherel µ ` k = nθ, ν ` n(1− θ), θ ∈ (0, 1):

cλµν =

(
n

k

)1/2

e−O(
√
n)

(ii) ∀ Plancherel µ, ν ∃ Plancherel λ ...

(iii) ∀ Plancherel λ, µ ∃ ν with VKLS limit shape:

f ν =
√

(n − k)! e−O(n2/3 log n) cλµν =

(
n

k

)1/2

e−O(n2/3 log n)

Proof ideas: Estimates from the identities∑
λ`n

cλµνf
λ =

(n
k

)
f µf ν

∑
µ`k,ν`n−k

cλµνf
µf ν = f λ

For (iii), skew SYT f µ/ν new bounds + properties of VKLS shape.
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Large dim doesn’t imply large LR

Theorem (Pak-Panova-Y 2019)

µ, ν ` n/2 Plancherel ∃ λ with VKLS limit shape

f λ =
√
n! eO(

√
n log n) & cλµν = 0.

Conjecture. ∃ Plancherel λ, µ, ν

1√
n

(n
2
− log2 c

λ
µν

)→ ∞
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Large LR implies (relatively) large dim

Theorem (Pak-Panova-Y 2019)

Let λ ` n, µ, ν ` n/2 with

cλµν =

(
n

n/2

)1/2

e−O(n/ log n)

=⇒ f λ =
√
n! e−O(n), f µ, f ν =

√
(n/2)! e−O(n)

Proof ideas: ∑
λ`n

(cλµν)
2 =

∑
α,β,γ,δ

cµαγc
µ
αδc

ν
βγc

ν
βδ (from skew Cauchy)

max
λ

cλµν ≤ ea
√
n max
α,β

cµαβmax
α,β

cναβ f λ ≥ e−un(cλµν)
log2 n
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Max LR with few rows

C`(n) := max
λ`n, `(λ)=`, µ,ν

cλµν

Theorem (Pak-Panova-Y. 2019)

n`
2/2−a`e−b`2 log ` ≤ C`(n) ≤ (n + 1)`

2/2

Proof ideas: Knutson-Tao interpretations, Schur polynomials bounds.

Corollary

logC`(n) ∼
1

2
`2 log n, ` = O(

√
n/ log n)



Containment of max LR

Theorem (Lam-Postnikov-Pylyavskyy 2007)

cλµν ≤ cλµ∪ν,µ∩ν

Corollary

∀n ∃µ ⊆ ν ⊆ λ cλµν = C (n)

Conjecture [PPY]

cλµν = C (n) =⇒ µ ⊆ ν ⊆ λ

Remark: C (n, k) for k = 1, . . . , n is symmetric but not unimodal, otherwise µ = ν
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Some conjectures, questions

I C (n) < 2n/2e−a
√
n or even C (n, θn) <

( n
θn

)
e−a
√
n

C (20, 7) = 11 <

√(20
7

)
≈ 278.42

I cλµν = C (n) =⇒ λ, µ, ν have VKLS limit shape

I stronger version: λ ` n, µ, ν ` n/2

f λ/
√
n! ≥ a

(
cλµν/

(
n

n/2

)1/2
)b log n

I LR bounds for other limit shapes
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Rahmet!

Thank you!


	Symmetric functions

