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Schlafli simplex

a=(ay,...,an), Sa CR™:
X X
1>2>...>2 >
a1 dn

v (Oa---30)>(31)0)'-->0)a(31>a2>0)--'30)>
Vol(S,) = a1 ---an/n!




Schlafli simplex

o L. Schéafli (18**) orthoschemes (Euclidean, Lobachevsky, spherical
geometry). H. Coxeter (1991) named after Schlafli

@ also known as path simplex (orthogonal edges form a path)
Hadwiger’s conjecture (1957): Every simplex can be decomposed
into a finite number of path-simplices
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@ also known as lecture hall polytopes (a € N"), Bousquet-Mélou &
Eriksson (1997), Savage & Schuster (2012), ...

S

Wikipedia Schlafli simplex



Schlafli simplex: some questions

Given a = (a1,...,a,) € N” (as an input in binary).
@ How many integer points in S,7 #(SanNz")
@ t € N, compute the Ehrhart polynomial &g, (t) = # (tSa NZ")

P C R" lattice polytope, tP its t-dilation (vert. coord’s X t)
Ehrhart polynomial: Ep(t) := # (tP NZ") = Vol(P)/nlt" + ...
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Given a = (a1,...,a,) € N” (as an input in binary).
@ How many integer points in S,7 #(SanNz")
@ t € N, compute the Ehrhart polynomial &g, (t) = # (tSa NZ")

P C R" lattice polytope, tP its t-dilation (vert. coord’s X t)
Ehrhart polynomial: Ep(t) .= # (tP NZ") = Vol(P)/n!t" + ...

@ For a general n-dim simplex, computing Ep is #P-complete.
@ For n fixed can be computed in polynomial time (Barvinok).

@ Special easily computable case: If a; =--- =a, =1, then

Es.(t)=#(t>x1> - >x,>0) = <t—|—n>

n
@ The problem is related to integer partitions (Sylvester denumerant):

pa(N) = #{(x1,...,xn) : x131 + ... + Xpa, = N}
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q(N) = # partitions of N into powers of two: 1,2,4,... (OEIS A018819)

recurrence: q(2N +1) = q(2N), qg(2N+2) =qg(2N+ 1)+ g(N)

1
N=1 n>0



Cayley’s theorem
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The number of partitions of 2X — 1 into the parts 1,1/,2,22, ... 2% js

equal to the number of x-partitions (first part unity, no part greater than
twice the preceding one).
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Theorem (Cayley, 1857)

The number of partitions of 2X — 1 into the parts 1,1/,2,22, ... 2% js

equal to the number of x-partitions (first part unity, no part greater than
twice the preceding one).

q0)+---+q(2"—-1) =
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@ Such x-partitions (by,..., by) are now called Cayley compositions
@ Cayley's proof used generating functions

@ Konvalinka & Pak (2014) found geometric bijective proof:

(p:(bl,...,bn)H (2—b1,2b1—b2,...,2bn71—bn)



Cayley & Schlfli

Cayley polytope C,, C R" (convex hull of Cayley compositions):

1<x <2, 1< x<2x, oy 1< xp < 2x51

Konvalinka & Pak (2013): Vol(C,) = cpt+1/n!, where cpy1 is the number
of connected labelled graphs on n vertices (was Braun's conjecture)



Cayley & Schlfli

Cayley polytope C,, C R" (convex hull of Cayley compositions):

1<x <2, 1< x<2x, oy 1< xp < 2x51

Konvalinka & Pak (2013): Vol(C,) = cpt+1/n!, where cpy1 is the number
of connected labelled graphs on n vertices (was Braun's conjecture)

Schlafli simplex S, ¢ R™

X X
12...2%20_

C,C S, Vol(S,) = 2(n§1)/n!, where 2('7;1) is the total number of
labelled graphs on n+ 1 vertices.



Binary partitions: asymptotics

Mahler (1940), De Bruijn (1948), Knuth (1966):
log g(N) ~ clog® N

If the input N has bit size n, the output g(/N) has O(n?) bits



Binary partitions: asymptotics

Mahler (1940), De Bruijn (1948), Knuth (1966):
log g(N) ~ clog® N

If the input N has bit size n, the output g(/N) has O(n?) bits

1 N 1 1 log log 2
log g(2N) ~—— log? +(=+ + )IoN
gq(2N) og & (IogN> <2 log 2 log 2 €

log 2

log log 2
— (1 + ﬂ) loglog N+ O(1)
log 2 S



Binary partitions: asymptotics
Mahler (1940), De Bruijn (1948), Knuth (1966):
log g(N) ~ clog® N

If the input N has bit size n, the output g(/N) has O(n?) bits

1 N 1 1 log log 2
log g(2N) ~—— log? +(=+ + )IoN
gq(2N) log 2 & (IogN> (2 log 2 log 2 €

log log 2
— (1 + ﬂ) loglog N+ O(1)
log 2

De Bruijn (1948): O(1) —



Binary partitions: asymptotics

Mahler (1940), De Bruijn (1948), Knuth (1966):
log g(N) ~ clog® N

If the input N has bit size n, the output g(/N) has O(n?) bits

1 N 1 1 log log 2
log g(2N) ~—— log? +(=+ + )IoN
gq(2N) og & (IogN> (2 log 2 log 2 €

log 2

log log 2
— (1 + ﬂ) loglog N+ O(1)
log 2

De Bruijn (1948): O(1) —

1 | —log| log log 2
loglog2 — = log 27t + Zock exp | 2mik ogn—loglogn+log og +0o(1)
2 ez log2



Binary partitions: asymptotics
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Theorem (Pak, Y., 2017)

Given a factorial-type sequence a = (a1,...,an) and s,t € N (all in
binary). The following functions can be computed in polynomial time

o Es.(t) = #(tSa N Z")
@ &g, (s,t) =# (tSanN{x, =stNZ")

Proof idea: recurrence/induction on the dimension n & interpolation
Note: &g, (s, t) is not a polynomial, but after some (computable) point can be
interpolated by a polynomial.

Corollary

Special case: Fora = (1,2,4,...,2"1), the functions Es, can be
computed in polynomial time
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Corollary

The number of binary partitions of N (i.e., partitions into powers of 2)
can be compute in time polynomial in log N.




Application to integer partitions

Given a and N, count integer partitions (also known as Sylvester
denumerant problem)

pa(N) == #{(x1,...,xs) € N" 1 a1xq + -+ apx, = N}

Deciding pa(N) # 0 is NP-complete and counting is #P-complete
Theorem (Pak, Y., 2017)

Given a factorial-type sequence a = (a1,...,a,) and N € N (all in binary).
The function p,(N) can be computed in polynomial time.

Corollary

The number of binary partitions of N (i.e., partitions into powers of 2)
can be compute in time polynomial in log N.

Proof idea: affine transformations between corresponding lattice polytopes living
inside Schlafli and partition simplices. The problem is then reduced to computing
the function &g_(s, t).



Algorithm for computing g(/N), the number of binary
partitions

B:Z — Zis given by s — [s/2]  Apf(t) = Z’gil(—l)e*1 (Z) f(t—20)

2t .

1, ifs<2t

en(t) = Z en—1(0), el(t) = -
=1 0’

otherwise.

2t 2k
et)=> al= > 1=max2t—p(s)+1,0)
t=1 t=[s/2]

Input: N in binary
Set s =2" — N for n so that 2" — N > 0.
For{=1,...,n
For t = B(s),...,B4s)+(—1
e(t) =ep(t—1) + e 1(2t— 1)+ e 1(2t)
For t = B4(s) +¢,...,BY(s) +2¢
e(t) = Ag ree(t)
Output: g(N) = en(1).



Open problem

Problem. Given N (in binary). Compute the number of partitions of N
into Fibonacci numbers in poly(log N) time.

Note: For partitions into distinct parts this problem was solved, Robbins
(1996), Englund (2001).



Rahmet!
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