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Schläfli simplex

a = (a1, . . . , an), Sa ⊂ Rn :

1 ≥ x1

a1
≥ · · · ≥ xn

an
≥ 0

v : (0, . . . , 0), (a1, 0, . . . , 0), (a1, a2, 0, . . . , 0), . . . , (a1, a2, . . . , an)

Vol(Sa) = a1 · · · an/n!



Schläfli simplex

L. Schäfli (18**) orthoschemes (Euclidean, Lobachevsky, spherical

geometry). H. Coxeter (1991) named after Schläfli

also known as path simplex (orthogonal edges form a path)

Hadwiger’s conjecture (1957): Every simplex can be decomposed

into a finite number of path-simplices

Wikipedia Schläfli simplex

also known as lecture hall polytopes (a ∈ Nn), Bousquet-Mélou &

Eriksson (1997), Savage & Schuster (2012), ...



Schläfli simplex: some questions

Given a = (a1, . . . , an) ∈ Nn (as an input in binary).

1 How many integer points in Sa? # (Sa ∩ Zn)

2 t ∈ N, compute the Ehrhart polynomial ESa(t) = # (tSa ∩ Zn)

P ⊂ Rn lattice polytope, tP its t-dilation (vert. coord’s × t)
Ehrhart polynomial: EP (t) := # (tP ∩ Zn) = Vol(P)/n!tn + . . .

For a general n-dim simplex, computing EP is #P-complete.

For n fixed can be computed in polynomial time (Barvinok).

Special easily computable case: If a1 = · · · = an = 1, then

ESa(t) = #(t ≥ x1 ≥ · · · ≥ xn ≥ 0) =

(
t + n

n

)
The problem is related to integer partitions (Sylvester denumerant):

pa(N) = #{(x1, . . . , xn) : x1a1 + . . .+ xnan = N}
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Binary partitions

q(N) = # partitions of N into powers of two: 1, 2, 4, . . . (OEIS A018819)

N = 1 =⇒ q(1) = 1
N = 2 = 1 + 1 =⇒ q(2) = 2
N = 2 + 1 = 1 + 1 + 1 =⇒ q(3) = 2

N = 4 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 =⇒ q(4) = 4

recurrence: q(2N + 1) = q(2N), q(2N + 2) = q(2N + 1) + q(N)

g.f.: 1 +

∞∑
N=1

q(N)tN =
∏
n≥0

1

1 − t2n
.
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Cayley’s theorem

Theorem (Cayley, 1857)

The number of partitions of 2x − 1 into the parts 1, 1 ′, 2, 22, . . . , 2x−1 is

equal to the number of x-partitions (first part unity, no part greater than

twice the preceding one).

q(0) + · · ·+ q(2n − 1) =

#{(b1, . . . , bn) ∈ Nn : 1 ≤ b1 ≤ 2, 1 ≤ b2 ≤ 2b1, . . . , 1 ≤ bn ≤ 2bn−1}

Such x-partitions (b1, . . . , bx) are now called Cayley compositions

Cayley’s proof used generating functions

Konvalinka & Pak (2014) found geometric bijective proof:

ϕ : (b1, . . . , bn) 7→ (2 − b1, 2b1 − b2, . . . , 2bn−1 − bn)
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Cayley & Schläfli

Cayley polytope Cn ⊂ Rn (convex hull of Cayley compositions):

1 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 2x1, . . . , 1 ≤ xn ≤ 2xn−1

Konvalinka & Pak (2013): Vol(Cn) = cn+1/n!, where cn+1 is the number

of connected labelled graphs on n vertices (was Braun’s conjecture)

Schläfli simplex Sn ⊂ Rn:

1 ≥ x1

2
≥ · · · ≥ xn

2n
≥ 0.

Cn ⊂ Sn, Vol(Sn) = 2(
n+1

2 )/n!, where 2(
n+1

2 ) is the total number of

labelled graphs on n + 1 vertices.
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Binary partitions: asymptotics

Mahler (1940), De Bruijn (1948), Knuth (1966):

log q(N) ∼ c log2 N

If the input N has bit size n, the output q(N) has O(n2) bits

log q(2N) ∼
1

log 2
log2

(
N

log N

)
+

(
1

2
+

1

log 2
+

log log 2

log 2

)
log N

−

(
1 +

log log 2

log 2

)
log log N + O(1)

De Bruijn (1948): O(1)→
log log 2 −

1

2
log 2π +

∑
k∈Z

αk exp

(
2πik

log n − log log n + log log 2

log 2

)
+ o(1)

αk = Γ

(
2πik

log 2

)
ζ

(
1 +

2πik

log 2

)
/ log 2
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The results

a = (a1, . . . , an) = (c1, c1c2, . . . , c1c2 · · · cn) ∈ Nn is a factorial-type

sequence (ci ∈ N)

Theorem (Pak, Y., 2017)

Given a factorial-type sequence a = (a1, . . . , an) and s, t ∈ N (all in

binary). The following functions can be computed in polynomial time

ESa(t) = # (tSa ∩ Zn)

ESa(s, t) = # (tSa ∩ {xn = s} ∩ Zn)

Proof idea: recurrence/induction on the dimension n & interpolation

Note: ESa(s, t) is not a polynomial, but after some (computable) point can be

interpolated by a polynomial.

Corollary

Special case: For a = (1, 2, 4, . . . , 2n−1), the functions ESa can be

computed in polynomial time
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Application to integer partitions

Given a and N, count integer partitions (also known as Sylvester

denumerant problem)

pa(N) := #{(x1, . . . , xn) ∈ Nn : a1x1 + · · ·+ anxn = N}

Deciding pa(N) 6= 0 is NP-complete and counting is #P-complete

Theorem (Pak, Y., 2017)

Given a factorial-type sequence a = (a1, . . . , an) and N ∈ N (all in binary).

The function pa(N) can be computed in polynomial time.

Corollary

The number of binary partitions of N (i.e., partitions into powers of 2)

can be compute in time polynomial in logN.

Proof idea: affine transformations between corresponding lattice polytopes living

inside Schläfli and partition simplices. The problem is then reduced to computing

the function ESa(s, t).
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Algorithm for computing q(N), the number of binary
partitions

β : Z→ Z is given by s 7→ ds/2e ∆n,t f (t) :=
∑n

`=1(−1)`−1
(n
`

)
f (t − `)

en(t) =
2t∑
`=1

en−1(`), e1(t) =

{
1, if s ≤ 2t ;

0, otherwise.

e2(t) =
2t∑
`=1

e1(`) =

2k∑
`=ds/2e

1 = max(2t − β(s) + 1, 0)

Input: N in binary
Set s = 2n − N for n so that 2n − N > 0.
For ` = 1, . . . , n

For t = β`(s), . . . , β`(s) + ` − 1
e`(t) = e`(t − 1) + e`−1(2t − 1) + e`−1(2t)

For t = β`(s) + `, . . . , β`(s) + 2`
e`(t) = ∆`,te`(t)

Output: q(N) = en(1).



Open problem

Problem. Given N (in binary). Compute the number of partitions of N

into Fibonacci numbers in poly(logN) time.

Note: For partitions into distinct parts this problem was solved, Robbins

(1996), Englund (2001).



Rahmet!
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