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Abstract

We describe the relation between graph decompositions into walks and the nor-
mal ordering of differential operators in the n-th Weyl algebra. Under several spec-
ifications, we study new types of restricted set partitions, and a generalization of
Stirling numbers, which we call the λ-Stirling numbers.
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1 Introduction

Let G = (V,E) be a digraph with an ordered set of edges E = (e1, . . . , em). A walk of G
is any sequence of edges ei1 . . . ei` such that the terminal vertex of eik coincides with the
initial vertex of eik+1

for all k < `. The walk ei1 . . . ei` is called increasing if i1 < · · · < i`.
Consider decompositions of G into edge-disjoint increasing walks. This setting gen-

eralizes set partitions, because when G has only one vertex and m labeled loops (1, 1),
decompositions into increasing walks correspond to partitions of the set [m] := {1, . . . ,m}
into subsets. If G is decomposed into one walk (with distinct edges), it is an Euler tour.
If G is a path and edges along the path are labeled by an arbitrary permutation σ ∈ Sm,
decompositions into minimal number of increasing walks index the descent set of σ.

This interpretation arises from the normal ordering problem in the Weyl algebra. The
n-th Weyl algebra An is an associative algebra with 2n generators x1, . . . , xn, ∂1, . . . , ∂n
subject to relations [∂i, xj] = δi,j, [xi, xj] = 0, [∂i, ∂j] = 0, where [a, b] = ab − ba is the
commutator and δi,j is the Kronecker delta. The element w ∈ An is normally ordered if
it is expressed in the form w =

∑
k ck

∏
i xi
∏

j ∂j. For the digraph G, the special case of
our normal ordering formula is

−→
m∏
`=1

xi`∂j` =
∑

decompositions into increasing
walks with sources I

∏
i∈I

xj
∏
j∈J

∂j,
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Figure 1: A digraph with an ordered set edges.

where (i`, j`) is an `-th edge of G and J is the corresponding multiset of sinks (which is
determined uniquely from the given sources I). For example, the graph in Figure 1 has
four decompositions into increasing walks:

e1e2e3, e1e2 ∪ e3, e1 ∪ e2e3, e1 ∪ e2 ∪ e3.

This corresponds to the normal ordering

x1∂2x2∂3x3∂1 = x1∂1 + x1x3∂3∂1 + x1x2∂2∂1 + x1x2x3∂2∂3∂1,

where the sources and sinks of walks are exactly the indices of terms. In fact, this
formula is a graph-theoretic version of Olshanski’s analog of Wick’s formula [26] (cf.
[27]). Collecting the terms we can rewrite

−→
m∏
`=1

xi`∂j` =
∑
I

SG(I)
∏
i∈I

xj
∏
j∈J

∂j,

where SG(I) is the number of decompositions of G into increasing walks with multiset
of sources I. In the case of the first Weyl algebra A1 this formula gives the well-known
expansion

(x∂)m =
∑
i

S(m, i)xi∂i

for Stirling numbers of the second kind S(m, i).
We introduced this combinatorial model in a more general setting in [15], where we

studied algebraic applications, polynomial identities and commutators on Weyl algebra.
In this paper we focus on combinatorial aspects of walk decompositions and various spec-
ifications of the normal ordering interpretations, such as restricted set partitions and
generalized Stirling numbers. We study walk decompositions and the G-Stirling func-
tions which enumerate decompositions by sources of walks. As we see, the values of the
G-Stirling function serve as connection constants in the normal ordering problem.

The setting of decomposing graphs into walks is a source for certain types of restricted
set partitions. For example, assume that digraph has 2 vertices and edges e1, e3, . . . going
from vertex 1 to 2 and the remaining edges e2, e4, . . . going back from 2 to 1. Decomposi-
tions on this model generate set partitions with the property that each block (when sorted)
is parity alternating (i.e. odd, even, odd, etc.). We show that the total number of parity
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alternating partitions of the set [m], satisfies the formula a(m) = Bb(m+1)/2cBd(m+1)/2e,
where Bk is the k-th Bell number, the number of partitions of [k]. Note that the latter
formula is not an obvious fact from the definition of a(m). We apply the composition of
operators in Weyl algebra to compute the number of such decompositions. This approach
is illustrated for a new special type of set partitions, which we call the residue alternating
partitions (a general version of the parity alternating partitions). The elements in every
block of these partitions form a consecutive (cyclic) interval modulo n and their total
number is the product of Bell numbers. We show both algebraic and bijective proofs to
this fact.

We then specify our interpretations to the case n = 1, for which there are many related
studies, e.g. [3, 4, 12, 18, 20, 21, 24, 30] and refer to a recent book [22] on the subject
of normal ordering. We introduce and study the λ-Stirling numbers. These numbers
of second kind naturally appear in decompositions of graphs with one vertex and many
loops. For the given sequence λ = (λ1 > λ2 > · · · ), the λ-Stirling numbers of the
second kind Sλ(n, k) is the number of partitions of [n] into k blocks such that the first
λ1 elements of [n] are in distinct blocks, the next λ2 elements are in distinct blocks, and
so on. This definition is a natural generalization of the r-Stirling numbers [5] and it was
studied in [25]. We show how these numbers Sλ(n, k) arise from our general graph setting
as well as from differential operators in the first Weyl algebra. On the other hand, we also
define the corresponding dual λ-Stirling numbers of the first kind Cλ(n, k), and show a
combinatorial interpretation to them. Namely, Cλ(n, k) is the number of permutations of
[n] having k cycles such that non-minimal elements of the first λ1 cycles are greater than
all minimal elements of these λ1 cycles; non-minimal elements of the next λ2 cycles are
greater than all minimal elements of these λ2 cycles, and so on (some of the remaining
cycles are singletons). The classical Stirling numbers are defined on two parameters: the
number of elements and the number of blocks (cycles). For these generalizations, one can
see that the λ-sequence affects on the first parameter in λ-Stirling numbers of the second
kind, and affects on the second parameter (cycles) in λ-Stirling numbers of the first kind.
We obtain many properties of Sλ(n, k), Cλ(n, k) analogous to the properties of the usual
Stirling numbers.

2 Decompositions into increasing walks

Suppose that edges of the digraph G = (V,E) are ordered (or labeled), E = (e1, . . . , em).
A k-decomposition is a decompositions of E into k edge-disjoint walks. We say that the
k-decomposition E = P1 ∪ . . . ∪ Pk is principal if every walk Pi = e`1 . . . e`s (1 6 i 6 k) is
increasing, i.e. we have `1 < . . . < `s.

When V = {1} and graph has m labeled loop edges (1, 1), principal decompositions
correspond to partitions of the set [m] into disjoint subsets. Further, we suppose that the
digraph G is presented by the vertex set V = [n].

A block (or p-block if p is specified) is a distinguished set of edges {e1, . . . , ep}. If graph
is built up from several (disjoint) blocks, then we will require that the edges in each block
must lie in distinct walks.
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Figure 2: A digraph built of three edge blocks (red, blue, black).

For example, digraph in Figure 2 which is built from three blocks B1 = {e1}, B2 =
{e2, e3}, B3 = {e4, e5, e6}, has a principal 4-decomposition e1e5 ∪ e2 ∪ e3e4 ∪ e6. Note that
decomposition e1e5 ∪ e2e3e4 ∪ e6 cannot be used here since e2, e3 are from the same block
B1 and thus cannot be in the same path.

For each vertex v ∈ V consider the sets

In(v) = {ei1 , . . . , eis}, Out(v) = {ej1 , . . . , ej`}

of its incoming and outcoming edges, respectively (loops (v, v) are included in both sets).
Suppose that the edges of G are built up from some partition of E into blocks. Consider
the matchings between In(v) and Out(v) defined as follows. We allow elements ei ∈ In(v)
and ej ∈ Out(v) to be matched if i < j and ei, ej are not in the same block. A matching
now is defined as some set of such matched pairs, where every edge is used at most once
from In(v) and at most once from Out(v) (so, only loops can be used once for both In(v),
Out(v)). Let M(v) be the set of all possible matchings (not necessarily maximal, and
including an empty matching) and M(v) be the set of maximal matchings. For example,
at vertex 2 of the graph in Figure 2 we have

In(2) = {e1, e2}, Out(2) = {e3, e5},

M(2) = {∅, {(e1, e3)}, {(e1, e5)}, {(e2, e5)}, {(e1, e3), (e2, e5)}},
M(2) = {(e1, e3), (e2, e5)}.

Let PD(G) be the set of principal decompositions of G.

Proposition 2.1. There is a bijection between the sets M(1)× · · · ×M(n) and PD(G).

Proof. Let us take an arbitrary matching for every vertex v (1 6 v 6 n) and construct
a principal graph decomposition. If ei ∈ In(v) and ej ∈ Out(v) are matched, then we
define them to be a fragment of a path eiej. Otherwise, if ei ∈ In(v) or ej ∈ Out(v) are
unmatched edges, then define them as final and initial edges of their corresponding paths,
respectively. One can easily verify that this map defines a principal decomposition and
its inverse defines a matching for every vertex.

Corollary 2.2. |PD(G)| =
∏n

i=1 |M(i)|.

Denote in(v) = |In(v)|, out(v) = |Out(v)|.
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Corollary 2.3. If G is acyclic digraph, then there exists a labeling of its edges such that
every path is increasing. Therefore, every decomposition of G is a principal decomposition
for such labeling. For every vertex v we can match some i edges from In(v) with some i
edges of In(v) in

(
in(v)
i

)(
out(v)
i

)
i! ways. Therefore,

M(v) =
∑
i>0

(
in(v)

i

)(
out(v)

i

)
i!

and the total number of decompositions of the acyclic digraph G is

n∏
v=1

(∑
i>0

(
in(v)

i

)(
out(v)

i

)
i!

)
.

2.1 On general walk and path decompositions

For a digraph G = (V,E), define flux(v) := in(v)− out(v), v ∈ V,

V + := {v ∈ V | flux(v) > 0}, V − := {v ∈ V | flux(v) < 0}

and the total flux as

f(G) :=
∑
v∈V +

flux(v) =
∑
v∈V −

−flux(v).

The basic properties of walk decompositions such as existence criteria, simply rely on
the usual Euler tours. We just add a new vertex so that for all v ∈ V we get flux(v) = 0.
This also allows to compute (or bound) the total number of walk decompositions using
the BEST theorem and the Matrix-tree theorem.

Decompositions into walks have the following matroid structure studied in [23]. Sets of
edges that are in distinct walks in a certain (minimal) decomposition are independent sets
of a matroid of rank f(G) (adding with the number of components of G). This matroid
is isomorphic to a cotransversal matroid. In fact, the sets of source (initial) edges of all
f(G)-decompositions also form a collection of matroid bases.

For (simple) path decompositions there are many studies (e.g. [1, 2, 8, 13, 16, 17, 19]),
most of which are around Gallai’s conjecture. Note that f(G) is attainable minimal
number of paths in a decomposition for acyclic digraphs; it was also shown in [1] that
the minimal number of paths needed to decompose a transitive tournament digraph on n
vertices is bn2/4c. Gallai’s conjecture states that every connected simple undirected graph
with n vertices can be decomposed into at most dn/2e paths; it is known that every such
graph can be decomposed into at most bn/2c paths or cycles [19].

3 G-Stirling functions

We use the following notation for multisets: A − X is a difference, e.g. {13, 22, 3, 43} −
{12, 2, 4} = {1, 2, 3, 42}; A ]X is a merge, e.g. {12, 2, 42} ] {1, 22, 3} = {13, 23, 3, 42}. We
also write G− e if edge e is eliminated from G or G−B if block B is removed.

the electronic journal of combinatorics 22(4) (2015), #P4.10 5



For a given digraph G, let

Vout := {1out(1), . . . , nout(n)}, Vin := {1in(1), . . . , nin(n)},

Mout(G) := {I | I ⊆ Vout},
i.e., Mout is the set of all sub(multi)sets of Vout.

Note that if for a k-decomposition, we have the sources I, then the corresponding
sinks J = Vin ] I − Vout are determined uniquely. (Further, for any sources I we will just
write sinks as J meaning that J = Vin ] I − Vout.)

Define the G-Stirling function SG : Mout(G)→ Z>0 as follows

SG(I) := the number of principal decompositions of G with sources I.

If n = 1, then SG(I) corresponds to Stirling number of the second kind S(m, k) where
|I| = k and digraph G has m labeled loops (1, 1).

Proposition 3.1. If I = {1`1 , . . . , n`n}, then

SG(I) =
n∏
i=1

Si(out(i)− `i), (1)

where Si(k) the number of matchings in M(i) of size k.

Proof. Since Si(k) the number of matchings in M(i) of size k, the vertex i is unmatched
out(i)− k times. Thus, from the bijection of Proposition 2.1, the vertex i is used exactly
out(i)− `i times as a source. Therefore, we get the formula by considering this argument
for every vertex i = 1, . . . , n and using Proposition 2.1.

Theorem 3.2 ([15]). The G-Stirling function SG satisfies the following properties:

(i) SG(Vout) = 1;

(ii) if SG(I) > 0 for some I ⊂ Vout, then for any I ′, such that Vout ⊇ I ′ ⊃ I, we have
SG(I ′) > 0;

(iii) Suppose that digraph G is built up from blocks B1, . . . , Bm so that the indices of
edges increase with respect to the order of blocks. Let e = (i, j) ∈ Bm, G′ = G− e,
I ′ = I − {i}. Let ki be the number of repetitions of i in (J − {j}) ] {i} and re be
the number of edges in Bm− e that end by i. Then the following recurrence relation
holds for SG(I).

SG(I) = SG′(I
′) + (ki − re)SG′(I). (2)

Corollary 3.3. If G has edges e1, . . . , em (without blocks), then for em = (i, j), G′ =
G− em, I ′ = I − {i} and ki the number of repetitions of i in (J − {j}) ] {i}, we have

SG(I) = SG′(I
′) + kiSG′(I). (3)
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Corollary 3.4. If G has n = 1 vertex and m loops (1, 1), then SG(I) = S(m, k) if |I| = k,
where S(m, k) is Stirling number of the second kind. Relation (3) becomes the well-known
recurrence

S(m, k) = S(m− 1, k − 1) + kS(m− 1, k).

Remark 3.5. The G-Stirling function SG(I) is a graph generalization of Stirling number
of the second kind. Note that SG is different from Stirling (and Bell) numbers for graphs
studied in [14], which count partitions of graph vertex set into independent sets. Although,
for n = 1 (and several blocks) there is a correspondence between these definitions as noted
in section 6.

In fact, Mout(G) can be considered as a poset ordered by inclusion. Let us consider a
subdomain of Mout(G) at which SG takes positive values; define the poset

PG := {I | SG(I) > 0}, (4)

whose elements (multisets) are ordered by inclusion.

Proposition 3.6. Let m(v) = |M(v)| be the size of a maximal matching. Then

(i) PG has a unique maximal element Vout, unique minimal element V0, where

V0 = Vout − {1m(1), . . . , nm(n)}.

(ii) PG is isomorphic to m(1)× · · · ×m(n).

Here by m we denote the chain poset of m elements and m × s is the poset of ms
elements defined as (cartesian) product of posets m, s (if s is empty, then put m×s = m).
(See e.g. [29])

Proof. First, from (i), (ii) of Theorem 3.2, Vout is a unique maximal element and if V0 is
some minimal element, then for all V0 ⊆ I ⊆ Vout. Let us prove that

V0 = {1out(1)−m(1), . . . , nout(n)−m(n)}

is a unique minimal element. From Theorem 2.1, there is a principal decomposition with
sources V0, so V0 ∈ PG. If there is another minimal element V ′, then iout(i)−m(i) 6∈ V ′ for
some i. This means that the vertex i has a matching of size greater than m(i), which is
impossible. So, both items (i), (ii) clearly imply from these arguments.

Corollary 3.7. If G is a cycle graph with edge labels given by

1→e1 2→e2 · · · →en−1 n→en 1,

then m(1) = 0, and m(i) = 2 for i = 2, . . . , n. Hence, PG is isomorphic to 2× · · · × 2 =
2[n−1].
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The total number of principal decompositions |PD(G)| serves as a generalized Bell
number. Let BG = |PD(G)|, then we have

BG =
∑

V0⊆I⊆Vout

SG(I). (5)

If we now define an extension BG(J) as

BG(J) :=
∑

V0⊆I⊆J

SG(I), (6)

then applying the Möbius inversion formula on the poset PG we get

SG(J) =
∑
I⊆J

µ(I, J)BG(I)

and in particular

SG(Vout) = 1 =
∑
I⊆Vout

µ(I, J)BG(I).

Note that PG is isomorphic to a divisibility poset, and µ(I, J) = (−1)|J−I| if J − I is a
set and 0 if J − I is a multiset. Hence we get

SG(J) =
∑
I⊆[n]

(−1)|J−I|BG(J − I)

and the kind of recurrence

BG = 1−
∑
∅⊂I⊆[n]

(−1)|Vout−I|BG(Vout − I).

4 Normal ordering in the Weyl algebra

Let K be a field of characteristic 0. The n-th Weyl algebra An is an associative algebra
over K defined by 2n generators x1, . . . , xn, ∂1, . . . , ∂n and relations

[xi, xj] = [∂i, ∂j] = 0, [∂i, xj] = δi,j for 1 6 i, j 6 n,

where [a, b] = ab − ba is the commutator and δi,j is the Kronecker symbol. The typical
example of An is the polynomial algebra with ∂i considered as partial derivations d/dxi.
The elements of types

xα∂β := xα1
1 · · · xαnn ∂β11 · · · ∂βnn

with α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn>0 are called monomials. We will also write
monomials in the equivalent form xi1 . . . xis∂j1 . . . ∂jp . All monomials xα∂β form a linear
vector space basis of An. When the element w of An is expressed as a linear combination

w =
∑
α,β

c(α, β)xα∂β, c(α, β) ∈ K,
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we say that w is normally ordered. Define the following subspaces of An:

A(p,q)
n := 〈xα∂β : |α| = p, |β| = q〉, A(0)

n :=
⊕
i>1

A(i,i)
n ,

where |α| =
∑n

i=1 αi. Note that A
(0)
n is the subalgebra of An.

We show that combinatorial meaning of coefficients in the normal ordering can be in-
terpreted in terms of graph decompositions. Furthermore, we will consider the monomials
of subspace A

(0)
n (otherwise, we may add fictive elements as shown in subsection 6.1). We

associate every monomial w = xi1 . . . xip∂j1 . . . ∂jp ∈ A
(0)
n with the p-block of a graph in

the following way:
block(w) := {(i1, j1), . . . , (ip, jp)}.

Theorem 4.1 ([15]). Let w1, . . . , wm ∈ A(0)
n be monomials. Then we have

w1 · · ·wm =
∑
I⊆Vout

SG(I)
∏
i∈I

xi
∏
j∈J

∂j, (7)

where G = ([n], E) with E = (block(w1), . . . , block(wm)) (i.e. the indices of edges increase
with respect to the order of blocks) and J = Vin ] I − Vout.

Corollary 4.2. For a digraph G = ([n], E) with E = (e1, . . . , em), we have

−→
m∏
`=1

xi`∂j` =
∑
I

SG(I)
∏
i∈I

xi
∏
j∈J

∂j, (8)

where e` = (i`, j`) and the sum runs over all (multi)sets of sources I.

Corollary 4.3. If n = 1, then (8) gives the well-known formula

(x∂)m =
m∑
i=0

S(m, i)xi∂i.

where S(m, i) is Stirling number of the second kind.

Analogous to formula (8), the operators xi∂j + xj∂i give a decomposition formula for
undirected graphs. Namely, we obtain the following result.

Theorem 4.4. For an undirected graph G = ([n], E) with E = (e1, . . . , em), e` = (i`, j`),
we have −→

m∏
`=1

(xi`∂j` + xj`∂i`) =
∑

decompositions into increasing
walks with sources I

∏
i∈I

xi
∏
j∈J

∂j. (9)

the electronic journal of combinatorics 22(4) (2015), #P4.10 9



The normal ordering decomposition formulas like (8), (9) are in particular useful when
we sum through all decompositions of G or symmetrize over all permutations of the edge
set. For w1, . . . , wm ∈ An, let

s+m(w1, . . . , wm) :=
∑
σ∈Sm

wσ(1) · · ·wσ(m).

Then for undirected graph G we have

s+m(xi1∂j1+xj1∂i1 , . . . , xim∂jm+xjm∂im) = (# Euler tours i→ j)xi∂j+higher order terms.

Consider a case of computing the sum s+m.

Proposition 4.5.

s+m(x1∂2, x2∂3, . . . , xm−1∂m, xm∂m+1)

= x1

( ∑
26i1<···<ik6m

(
m

i1 − 1, i2 − i1, . . . ,m+ 1− ik

) k∏
`=1

xi`

k∏
`=1

∂i`

)
∂m+1,

where
(

m
m1,...,mk

)
= m!

m1!···mk!
is a multinomial coefficient.

Proof. From monomials x1∂2, x2∂3, . . . , xm−1∂m, xm∂m+1, the digraph G is a single path
1 → 2 → · · · → m → m + 1. Taking all permutations σ ∈ Sm means that we permute
the edges of G up to σ. Consider decompositions into increasing walks in that case.
Suppose that we break the paths at vertices 2 6 i1 < · · · < ik 6 m. Then the number
of permutations σ ∈ Sm for which the fragments 1 → · · · → i1/i1 → · · · → i2/ · · · /ik →
· · · → m+1 are all increasing, is clearly equal to

(
m

i1−1,i2−i1,...,m+1−ik

)
and the corresponding

monomial is x1xi1 · · ·xik∂i1 · · · ∂ik∂m+1 and so we obtain the formula.

Remark 4.6. Note that the last formula is computationally effective; we compute 2m−1

terms instead of calculating s+m with m! summands.

5 Cyclic multigraphs and residue alternating partitions

Consider the digraph Cm,n with n vertices and m edges (m > n) that consecutively form
a cycle (12 · · ·n), i.e. the edges {e1, . . . , em} in order are

e1 = (1, 2), e2 = (2, 3), . . . , en = (n, 1), en+1 = (1, 2), . . .

The principal decompositions on such graph correspond to the following type of set parti-
tions. Say that the set partition ∪Xi = [m] is residue alternating if for every i (1 6 i 6 k)
and Xi = {a1, . . . , ar} with a1 < · · · < ar, we have ai+1 − ai ≡ 1 (mod n) for i = 1, . . . , r
(ar+1 = a1).

Let A(m,n) be the number of residue alternating partitions (or the number of decom-
positions of digraph Cm,n).

the electronic journal of combinatorics 22(4) (2015), #P4.10 10



Theorem 5.1. The following formulas hold for A(m,n)

A(nk, n) = Bk(Bk+1)
n−1

and for 0 < r < n
A(nk + r, n) = (Bk+1)

n−r+1(Bk+2)
r−1,

where Bk is the Bell number, the number of partitions of set [k].

Proof. First we examine the approach using composition of differential operators. Note
that A(m,n) corresponds to the number BG =

∑
I SG(I) (see def. (5)) of all principal

decompositions of G = Cm,n. Therefore, we can use the normal ordering expansion of
differential operators to calculate A(m,n) = BG.

If m = nk, then the composition of operators is

(x1∂2 · · ·xn∂1) · · · (x1∂2 · · ·xn∂1) = (x1∂2 · · · xn∂1)k = (x1∂1)
k(∂2x2)

k · · · (∂nxn)k.

In fact, A(m,n) is the sum of coefficients in the normal ordering expansion of the last
expression. The sum of coefficients in expansion (x1∂1)

k is

k∑
i=0

S(k, i) = Bk

and the sum of coefficients in the normal ordering of (∂`x`)
k is

k∑
i=0

(
k

i

)
Bi,

since

(∂`x`)
k = (1 + x`∂`)

k =
k∑
i=0

(
k

i

)
(x`∂`)

i.

It remains to use the well-known recurrence for Bell numbers

Bk+1 =
k∑
i=0

(
k

i

)
Bi.

So, the sum of coefficients A(nk, n) in the normal ordering of (x1∂1)
k(∂2x2)

k · · · (∂nxn)k is
Bk(Bk+1)

n−1.
Similarly, if m = nk + r we have the composition

(x1∂2 · · ·xn∂1) · · · (x1∂2 · · · xn∂1)x1∂2 · · ·xr∂r+1

= x1(∂1x1)
k
[
(∂2x2)

k+1 · · · (∂rxr)k+1
]

(∂r+1xr+1)
k∂r+1

[
(∂r+2xr+2)

k · · · (∂nxn)k
]

and by the same argument it follows that A(nk + r, n) = (Bk+1)
n−r+1(Bk+2)

r−1.
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Bijective proof. Using Corollary 2.2 of Theorem 2.1 we look at matchings of edges at every
vertex.

Suppose m = nk and consider the vertex i, where 2 6 i 6 n. We have

In(i) = {ei−1, en+i−1, e2n+i−1, . . . , e(k−1)n+i−1},

Out(i) = {ei, en+i, e2n+i, . . . , e(k−1)n+i}.

We will prove that |M(i)| = Bk+1 by establishing a bijection between matchings inM(i)
and partitions of set [k + 1]. Let M ∈ M(i) be any matching between In(i), Out(i).
Construct set partition of [k + 1] as follows:

(1) if (ean+i−1, ebn+i) ∈M , where a 6 b, then put a+ 1, b+ 2 in the same block;

(2) the remaining elements of [k + 1] (that were not considered yet), put in separate
blocks.

For example, if k = 5, In(i) = {e1, e3, e5, e7, e9},Out(i) = {e2, e4, e6, e8, e10},

M = {(e1, e6), (e3, e4), (e5, e8)},

then (e1, e6) means that we should put 1, 4 in the same block; for (e3, e4) the elements 2, 3
are in the same block; and for (e5, e8) the elements 3, 5 are in the same block. Therefore,
we have the partition {1, 4}{2, 3, 5}{6}.

The inverse procedure can be described as follows: take any block of the partition,
{a1 < · · · < ar} and for every j = 1, . . . , r− 1 match the edges (e(aj−1)n+i−1, e(aj+1−2)n+i).

One can see that this properly defines the bijection.
By applying a similar argument one can show that |M(1)| = Bk and therefore, by

Theorem 2.1, A(nk, n) = Bk(Bk+1)
n−1. The formula for A(nk+ r, n) implies analogously.

5.1 Parity alternating partitions

For n = 2 we have the graph model with 2 vertices and n edges {e1, . . . , en} such that all
odd-indexed e2i−1 are of type (1, 2) and all even-indexed e2i are of type (2, 1).

All principal decompositions on this graph can be considered as partitions X1∪· · ·∪Xk

of [m] that have the following property: For every i(1 6 i 6 k) and Xi = {a1, . . . , ar}
with a1 < · · · < ar, the sequence a1, . . . , ar is parity alternating (i.e. even, odd, even, odd,
etc. or similarly beginning with odd). Let us call such partitions of sets parity alternating
partitions. For example, the parity alternating partitions of {1, 2, 3, 4} into two blocks are

{1}{2, 3, 4}; {4}{1, 2, 3}; {1, 2}{3, 4}; {1, 4}{2, 3}.

Denote by a(m) = A(m, 2) the total number of parity alternating partitions of [m].
Then the following formulas hold

a(2k) = BkBk+1, a(2k + 1) = B2
k+1.
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Remark 5.2. The latter formulas mean that the number of parity alternating partitions of
[m] is equal to the number of partitions of [m+ 1] where elements in each block have the
same parity. (The second sequence appears in OEIS, A124419 [28]). Bijectively, this fact
can be described as follows: x, y are successive elements in the block of parity alternating
partitions iff x, y + 1 are successive elements of the second type of partitions. Note that
such reduction algorithm was applied to regular (noncrossing) set partitions in [6].

The values of a(m) can also be computed by the number of blocks. Let a(m, k) be
the number of parity alternating partitions into k blocks and a(m, k, i) the number of
parity alternating partitions into k blocks i of which have even maximal elements. We
have a(m, k) =

∑k
i=0 a(m, k, i), a(m) =

∑n
k=1 a(m, k).

m\k 1 2 3 4 5 6 7 8 a(m)
1 1 1
2 1 1 2
3 1 2 1 4
4 1 4 4 1 10
5 1 6 11 6 1 25
6 1 10 28 26 9 1 75
7 1 14 61 86 50 12 1 225
8 1 22 136 276 236 92 16 1 780

Table 1: Small values of a(m) and a(m, k).

Proposition 5.3. Recurrence relations for a(m, k, i) are given by

a(1, 1, 0) = 1, a(m, k, i) = 0 for m < k or k < i,

a(2m+ 1, k, i) = a(2m, k − 1, i) + (i+ 1)a(2m, k, i+ 1),

a(2m, k, i) = a(2m− 1, k − 1, i− 1) + (k − i+ 1)a(2m− 1, k, i− 1).

Proof. Consider parity alternating partitions of set [2m + 1] into k blocks, i of whose
maximal elements are even. The element 2m+ 1 can form a separate block contributing
a(2m, k − 1, i) ways. Otherwise, 2m + 1 can be placed into blocks of parity alternating
partitions of [2m] having k blocks and (i + 1) maximal even elements (since 2m + 1 will
change the parity of one maximal element); this gives (i+ 1)a(2m, k, i+ 1) ways.

Similarly, if we look at partitions of [2m], then 2m can form a separate block in
a(2m−1, k−1, i−1) ways and can be placed into other blocks in (k−i+1)a(2m−1, k, i−1)
ways.

6 Case n = 1, the λ-Stirling numbers

6.1 Normal ordering for n = 1.

Combinatorial interpretations of coefficients in the normal ordering expansion

xr1∂s1 · · ·xrt∂st =
∑
i

SG(i)xi∂j (10)
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can be extracted from Theorem 4.1 as follows. The elements xri∂si are not from A
(0)
1 =

〈xi∂i : i = 0, 1, . . .〉 in general (i.e. if ri 6= si). To deal with this situation, we add fictive

|ri−si| new variables xi+1 or ∂i+1 so that the monomial will belong to A
(0)
1 , and the graph

scheme can be applied. For example, x2∂5 is transformed to x32x
2∂5. Note that the new

variables commute with all other and so we can freely move them in the normal ordering
expansion. Using these new monomials, we construct the graph G according to the rules
above. Thus, combinatorial meaning of SG(i) can be described as the number of principal
decompositions of G having i sources at vertex 1. This interpretation is similar to the
graph models studied in [3] (the model there is acyclic which is different to ours since for
n = 1 we have loops).

Remark 6.1. In fact, the normal ordering in the n-th Weyl algebra can be computed using
the n = 1 case. For instance, we can restructure compositions as follows

x1x2∂1∂3x2x3∂1∂3x1∂2 = (x1∂
2
1x1)(x

2
2∂2)(∂3x3∂3).

This view also helps to refine all possible multisets of sources and sinks I, J , since what
coefficients are nonzero in every composition like (10) can be found.

6.2 The λ-Stirling numbers

Consider the graph with n = 1 vertex and suppose it is built up from blocks of loops
(1, 1) of λ1, λ2, . . . edge sizes. Principal decompositions on this model require that the
edges within one block cannot lie on the same walk. This setting clearly corresponds
to partitions of the set [m] (m is a total number of edges), where the first λ1 elements
are in distinct subsets, the next λ2 elements are also in distinct subsets, and so on. The
coefficients SG(I) present a generalization of Stirling numbers of the second kind on such
restricted partitions. In this section we study these generalized Stirling numbers. We also
introduce a generalization of Stirling numbers of the first kind, which can be considered
as dual to the second. We call these numbers the λ-Stirling numbers.

Fix the sequence

λ0 = 0, λ = (λ1, λ2, . . .), λ1 > λ2 > · · ·

of nonnegative integers, and let

q = qn := max{i | λ0 + · · ·+ λi 6 n},

r = rn := n− λ0 − · · · − λq.

So λ is a kind of ‘infinite’ integer partition, q is the analog of quotient and r is the analog
of remainder.

Definition. The λ-Stirling numbers of second and first kinds Sλ(n, k), Cλ(n, k) are defined
as follows:
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• Sλ(n, k) is the number of partitions of [n] into k blocks such that the first λ1 elements
of [n] are in distinct blocks, the next λ2 elements are in distinct blocks, and so on;
the remaining rn elements are also in distinct blocks.

• Cλ(n, k) is the number of permutations of [n] with k cycles such that non-minimal
elements of the first λ1 cycles are greater than all minimal elements of these λ1
cycles; non-minimal elements of the next λ2 cycles are greater than all minimal
elements of these λ2 cycles, and so on; and the remaining rk cycles are singletons
(i.e. consist of one element).

By definition, the sequence λ affects on the first argument n in Sλ(n, k) and on the
second argument k in Cλ(n, k). Further we will see that Sλ(n, k), Cλ(n, k) are dual to
each other.

Remark 6.2. For permutation σ of [n] having k cycles we associate representation in
the form σ = (σ(1)) · · · (σ(k)), where σ(1), . . . , σ(k) are cycles written in increasing order
of their minimal elements. For example, the permutation (5, 6, 1, 7, 3, 2, 4) is written as
(1, 5, 3)(2, 6)(4, 7).

So we divide the set [n] according to the integer partition n = λ1 + . . .+ λq + r:

[n] = {1, . . . , λ1︸ ︷︷ ︸
1st part

, . . . , λ1 + · · ·+ λq−1 + 1, . . . , λ1 + · · ·+ λq︸ ︷︷ ︸
q-th part

, n− λq + 1, . . . , n︸ ︷︷ ︸
last r elements

}

and consider only those set partitions which restrict the elements of the same part to be
in the same subset.

For the case of permutations, we take the partition k = λ1 + . . .+λqk +rk and consider
permutations of the following type:

σ(1), . . . , σ(λ1)︸ ︷︷ ︸
∀ non-min > ∀ min

| · · · |σ(λ1+···+λqk−1
+1), . . . , σ(λ1+···+λqk )︸ ︷︷ ︸

∀ non-min > ∀ min

|σ(k−rk+1), . . . , σ(k)︸ ︷︷ ︸
last rk singletons

Consider examples. If λ = (3, 2, 1, 1, . . .), then Sλ(6, 4) = 30 and allowed configurations
of partitions of {1, 2, 3, 4, 5, 6} into 4 blocks can be described as follows:

• If 1, 2, 3, 4 are blocks minima; then 5 can be put with 1, 2, 3 (except restriction with
4) and 6 with 1, 2, 3, 4 which totally gives 3× 4 = 12 ways;

• If 1, 2, 3, 5 are blocks minima; then 4 can be put with 1, 2, 3 and 6 with 1, 2, 3, 4
which totally gives 3× 4 = 12 ways;

• If 1, 2, 3, 6 are blocks minima; then 4 can be put with 1, 2, 3 and 5 with 1, 2, 3 except
the block with 4, which totally gives 3× 2 = 6 ways;

So, there are totally 12 + 12 + 6 = 30 ways to arrange desired partitions.
Cλ(6, 4) = 36 and configurations of permutations of (1, . . . , 6) with 4 cycles can be

described as follows:
(1, 2, 3 should always be cycle minima; and cycle number 4 is singleton)
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• If 1, 2, 3, 4 are cycle minima; then 5 can be put with 1, 2, 3 and 6 can be put after
1, 2, 3, 5, which gives 3× 4 = 12 ways;

• If 1, 2, 3, 5 are cycle minima; then 4 can be put with 1, 2, 3 and 6 can be put after
1, 2, 3, 4, which gives 3× 4 = 12 ways;

• If 1, 2, 3, 6 are cycle minima; then 5 can be put with 1, 2, 3 and 4 can be put after
1, 2, 3, 5, which gives 3× 4 = 12 ways.

So, there are totally 12 + 12 + 12 = 36 possible permutations with 4 cycles.

Clearly if λ = (1, 1, . . .), then Cλ(n, k), Sλ(n, k) are just the usual Stirling numbers.
The case λ = (r, 1, 1, . . .) corresponds to the r-Stirling numbers of first and second kinds
introduced in [5]. Generalized Stirling numbers of the second kind Sr,s(n, k) that arise
from the expansion

xr1∂s1 · · · xrn∂sn = x
∑
ri−di

∑
k

Sr,s(n, k)xk∂k.

have been studied in the bosons normal ordering problem [4, 24] (see also [12]). Our
definition gives a natural (and simple) combinatorial interpretation to the case Sr,r(n, k)
and also solves an inverse problem, where Stirling numbers of the first kind arise. Note
that the general formulas for Sr,s(n, k) given in [24] can be used to compute our numbers
SG, BG (defined in Section 2). Interpretation to Sr,r(n, k) with colorings of complete
graphs introduced in [7] is very close to the meaning of Sλ(n, k) (λ = (r, r, . . .)), since
any r elements that cannot be in the same subset can be viewed as proper colorings of a
component complete graph Kr; on the other hand, this definition corresponds to Stirling
numbers for graphs in the sense of counting partitions of a vertex set into independent sets
(see [14]). The numbers Sλ(n, k) were introduced in [25] as (r1, . . . , rp)-Stirling numbers
of the second kind. In order to be consistent with the corresponding Stirling numbers
of the first kind Cλ(n, k), we define these numbers over a general sequence λ relating
it with integer partitions, since it somehow acts (as integer partition) on first (or resp.
second) argument of these Stirling numbers. In fact, by polynomial relations (18), (19)
shown below, the λ-Stirling numbers correspond to a case of the multiparameter non-
central Stirling numbers introduced in [11]. This also leads to a case of a general study
of connection constants between persistent sequences of polynomials [10].

The numbers Sλ(n, k) also related to compositions (ordered partitions) of multisets in
the following way. For n = λ1 + · · ·+ λq + r consider a multiset

n := {1λ1 , . . . , qλq , (q + 1)r}.

Then the number of ways to distribute the elements of n into k ordered nonempty sets is
equal to

Sλ(n, k)k!

λ1! · · ·λq!r!
.
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This easily implies from the combinatorial interpretation of Sλ(n, k). If blocks are ordered,
then we multiply the number of ways by k!. The elements λ1+· · ·+λj−1+1, . . . , λ1+· · ·+λj
(which all in distinct blocks) can be changed to the repetition jλj ; that was calculated λj!
times.

λ = (2, 2, 1, 1, . . .)

n\k 2 3 4 5 6
2 1
3 2 1
4 2 4 1
5 4 14 8 1
6 8 46 46 13 1

n\k 2 3 4 5 6
2 1
3 2 1
4 6 4 1
5 24 18 8 1
6 120 96 58 13 1

Sλ(n, k) for 2 6 n, k 6 6 Cλ(n, k) for 2 6 n, k 6 6.

λ = (2, 2, 2, . . .)

n\k 2 3 4 5 6
2 1
3 2 1
4 2 2 1
5 4 14 8 1
6 4 32 38 12 1

n\k 2 3 4 5 6
2 1
3 2 1
4 6 4 1
5 24 18 8 1
6 120 96 58 12 1

Sλ(n, k) for 2 6 n, k 6 6 Cλ(n, k) for 2 6 n, k 6 6.

λ = (3, 2, 1, . . .)

n\k 3 4 5 6
3 1
4 3 1
5 6 6 1
6 18 30 11 1

n\k 3 4 5 6
3 1
4 3 1
5 12 6 1
6 60 36 11 1

Sλ(n, k) for 3 6 n, k 6 6 Cλ(n, k) for 3 6 n, k 6 6.

Table 2: Some tables for Sλ(n, k), Cλ(n, k).1

6.3 Main properties

Let us define

(x)0 := 1; (x)m := x(x− 1) · · · (x−m+ 1); (x)λn := (x)λ0 · · · (x)λqn (x)rn .

Denote D` := x`∂`, then
D`1D`2 = D`2D`1

or more precisely

D`1D`2 =
∑
i

i!

(
`1
i

)(
`2
i

)
D`1+`2−i. (11)

1Sλ(n, k) = Cλ(n, k) = 0 if k < λ1 or k > n. If λ = (1, 1, . . .) or λ = (r, 1, 1, . . .) then the λ-Stirling
numbers are referred to the ordinary Stirling numbers (A008275, A008277, A048994 in OEIS) or to
the r-Stirling numbers (A143494, A143495, A143496, A193685, A143491, A143492, A143493 in OEIS
[28]), respectively. Some values of Sλ(n, k) (of second kind) are referred to A078739, A008297, A035342,
A078740, A078741, A090214 in OEIS [28].
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The last formula gives
D` = D`−1D1 − (`− 1)D`−1. (12)

Let Dλn be the operator defined as

Dλn := Dλ0 · · · DλqDr.

Similar to equation (12) we can obtain that

Dλn = Dλn−1D1 − rn−1Dλn−1. (13)

Theorem 6.3. The numbers Sλ(n, k), Cλ(n, k) have the following properties.
(i) Recurrence relations

Sλ(n, k) = Sλ(n− 1, k − 1) + (k − rn−1)Sλ(n− 1, k) (14)

with Sλ(n, k) = 0 if k < λ1 or k > n; Sλ(n, n) = 1.

Cλ(n, k) = Cλ(n− 1, k − 1) + (n− 1− rk)Cλ(n− 1, k) (15)

with Cλ(n, k) = 0 if k < λ1 or k > n; Cλ(n, n) = 1.
(ii) Expansions with differential operators

Dλn =
∑
k

Sλ(n, k)Dk, (16)

Dn =
∑
k

(−1)n−kCλ(n, k)Dλk . (17)

(iii) Polynomial expansions

(x)λn =
n∑
k=0

Sλ(n, k)(x)k, (18)

(x)n =
n∑
k=0

(−1)n−kCλ(n, k)(x)λk (19)

(iv) Orthogonality relations∑
k

(−1)k−mSλ(n, k)Cλ(k,m) = δn,m, (20)

∑
k

(−1)k−mCλ(n, k)Sλ(k,m) = δn,m. (21)

(v) Symmetric functions related formulas 2

Sλ(n, k) =
∑

16i16···6in−k6k

n−k∏
j=1

(ij − rij+j−1), (22)

2These are related to complementary symmetric functions studied in [9].
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Cλ(n, k) =
∑

16i1<···<in−k6n

n−k∏
j=1

(ij − rij+1−j). (23)

(vi) The general formula for Sλ(n, k) is given by

Sλ(n, k) =
1

k!

k∑
`=0

(
k

`

)
(−1)k−`(`)λn. (24)

(vii) The following recurrence relations hold

Sλ(n, k) =
rn∑
j=0

(
rn
j

)
(k − j)rn−jSλ(n− rn, k − j), (25)

Cλ(n, k) =
n∑

j=rk

(
j

rk

)
(n− rk − 1)j−rkCλ(n− j, k − rk). (26)

(viii) The formulas

Sλ(n, k) =
∑

j1,...,jqn+1

(
rn
jqn+1

)
(k − jqn+1)rn−jqn+1

qn∏
`=1

(
λ`
j`

)
(k − j` − · · · − jqn+1)λ`−j` . (27)

Cλ(n, k) =
∑

j1,...,jqk+1

(
jqk+1

rk

)
(n− rk− 1)jqk+1−rk

qk∏
`=1

(
j`
λ`

)
(n− j`− · · ·− jqk+1− r`− 1)j`−r` .

(28)

Proof. (i) Recurrence relations.
We can show that the number of described partitions has the same recurrence as (14).

Note that the number of ways is 0 when k < λ1 or k > n. If we consider the element
n, then two cases are possible. If n forms a separate block, then we have the number of
ways to partition [n− 1] into k− 1 parts over partition λ. If n if placed in the block with
some other elements except the restricted; this can be done in (k − rn−1) ways of any of
partitions of [n − 1] into k blocks over partitions λ. This argument implies the needed
recurrence for Sλ(n, k).

We show that the described number of ways satisfies the same recurrence as (15). Note
that the number of ways is 0 when k < λ1 or k > n. Consider the element n and two
cases. If n form a singleton separate cycle, then the number of corresponding ways is the
number of permutations of [n− 1] having k − 1 cycles with the properties for λ partition
of k − 1. If n is in cycle with the other elements, then we can put n in cycles after any
element except last rk singletons. This gives (n − 1 − rk) ways for any permutation of
[n− 1] with k cycles and the described partition property. This argument clearly implies
the needed recurrence for Cλ(n, k).
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(ii) Expansions with differential operators.
The first relation

Dλn =
n∑
k=0

Sλ(n, k)Dk

implies from our general Theorem 4.1 on graph partitions.
From equation (12) we may easily obtain that

Dλn = Dλn−1D1 − rn−1Dλn−1.

For the companion expansion if for we know for n− 1

Dn−1 =
n−1∑
k=0

(−1)n−1−kCλ(n− 1, k)Dλk ,

then for n we get

Dn = Dn−1D1 − (n− 1)Dn−1

=
n−1∑
k=0

(−1)n−1−kCλ(n− 1, k)DλkD1 −
n−1∑
k=0

(−1)n−1−k(n− 1)Cλ(n− 1, k)Dλk

=
n−1∑
k=0

(−1)n−1−kCλ(n− 1, k)(Dλk+1 + rkDλk)−
n−1∑
k=0

(−1)n−1−k(n− 1)Cλ(n− 1, k)Dλk

=
n∑
k=0

(−1)n−k(Cλ(n− 1, k − 1) + (n− 1− rk)Cλ(n− 1, k))Dλk

=
n∑
k=0

(−1)n−kCλ(n, k)Dλk .

(iii) Polynomial expansions.
Applying the derivation operation to the function xt with a real parameter t, expan-

sions (16), (17) yield

(t)λ0 · · · (t)λqn (t)rnx
t =

n∑
k=0

Sλ(n, k)(t)kx
t,

(t)nx
t =

n∑
k=0

(−1)n−kCλ(n, k)(t)λ0 · · · (t)λqk (t)rkx
t.

The last two identities are polynomial relations in t and hold for all t which imply (18),
(19).

(iv) Orthogonality relations directly imply from the inverse expansions (16), (17).
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(v) Symmetric function related formulas can be easily obtained by induction and use
of the recurrence relations (14), (15).

(vi) The general formula for Sλ(n, k). We will show that this formula holds using
combinatorial interpretation of Sλ(n, k) and the inclusion-exclusion principle. Suppose
that blocks are ordered. Let us enumerate them as 1, . . . , k.

Denote by Ai (1 6 i 6 k) the set of corresponding restricted (up to λ) arrangements
of [n] into k ordered blocks such that the i-th block is empty. Let A be the number of all
restricted arrangements of [n] into k blocks (some of them might be empty). Then it is
clear that

k!Sλ(n, k) = A− |A1 ∪ · · · ∪ Ak|.
Note that

A = (k)λ1 . . . (k)λqn (k)rn

and
|Ai1 ∩ · · · ∩ Aik−` | = (`)λ1 . . . (`)λqn (`)rn

for any set of indices 1 6 i1 < · · · < ik−` 6 k. Therefore, using the inclusion-exclusion
principle we get

k!Sλ(n, k) = A− |A1 ∪ · · · ∪ Ak|

= (k)λ1 . . . (k)λqn (k)rn −
k−1∑
`=0

∑
16i1<···<ik−`6k

(−1)k−1−`|Ai1 ∩ · · · ∩ Aik−` |

= (k)λ1 . . . (k)λqn (k)rn −
k−1∑
`=0

(−1)k−1−`
(
k

`

)
(`)λ1 . . . (`)λqn (`)rn

=
k∑
`=0

(−1)k−`
(
k

`

)
(`)λ1 . . . (`)λqn (`)rn .

(vii) Recurrence relations.
Recurrence (25). Suppose that j elements of the last rn in [n] are singleton blocks.

We can choose these elements in
(
rn
j

)
ways. The remaining (rn − j) elements should be

put in distinct (k − j) blocks of any of Sλ(n − rn, k − j) partitions, which can be done
(k − j)rn−j times.

Recurrence (26). We may choose the needed rk singleton cycles from the last j elements
of [n]. This can be done in

(
j
rk

)
ways. The remaining (j − rk) elements should be put

in the first (n − j) cycles of any of Cλ(n − j, k − rk) permutations, which can be done
(n− rk − 1)j−rk times.

(viii) The last formulas (27), (28) imply from iterative use of relations (25), (26).
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